ENVIRONMENTAL RESTORATION DEPARTMENT FIELD TEAM LEADER'S DAILY LOG | DATE START 7/11 | | |----------------------|---------------| | DATE END 8/22 | | | | | | LOGBOOK NO: ERP-C | 756-95 | | LOGBOOK ASSIGNED TO: | Chris Hiaring | | SITE: 04 5-02/12 | <i></i> | WHEN COMPLETED RETURN TO: DONNA KIRCHNER (6-9873) MS 3910 7/26/95 0900 - D. Gianotto, P. Boyd, H. Bullock, Z. Gurney, and K. Roberts arrive at CF-625 and prepare equiptment for ABF-30 septic tank sampling. Trip blank is prepared. 1000 - Team arrives at PBF-30 and stage site. L. Gurney gives health + sufety briefing with emphasis on biological huzard and good sanitary practices, H25 hazards, and work conditions. L. Gurney authorizes no hard hat requirement because there are no overhead hazards. Samples will be surveyed before lewing IBF area and personnel through a partal monitor, Travis Rybicki, Keith Barnes, George Reynolds arrive at site as observes. Lance breits them on the huzards. The cover is removed at 1030. The peristaltic pumb does not work. We use the lipper for water sumples. The VOC samples are collected first. Times are 1049 and 1050 The water is murky, but not dark. The next sample is gamma spec at 1057. The wind makes paperwork and sumpling difficult. Water sumples are collected from different venticul & horizontal stratus of the tank The CLI metals is collected at 1100. Three 2360 al Amberglass will be used to collect the 6000ml required for ELP Semilion/PCBS. at 1/07 Mike Crane arrives to take photos. Gross X/B Mortel at HHY. 1117. The TCLP Volatile collected et 1121. We move on to collect the field blanks. Gross X/B blanks collected et 1/30. CLP metals blank collected at 1/33. The gamma | spec blank is collected a 1135, voc blanks collected at 1138. | |---| | We will collect studge samples after lunch. 1145 - DEC | | We decide to How-off lunch and continue sampling. | | The sludge is collected with the dipper water is decanted | | off the dipper and put into a metal pan. Some is black word, | | some is brown colored. The sludge in the pan is thorough | | mixed in the par. The sludge is runny, not thick- It's | | pourable. No VOCs or Hos has been detected the | | industrial Hygenist. The first sludge sample is gross | | alpha beta collected at 1202. The 8-spec is collected as | | 1204. The TCLP Volatile is collected at 1206. The CCP metals | | is collected at 1208. The CLP semi-valpes is collected at | | 1210. The CLF VOA is collected at 12/2. Sampling | | equipment is decontamined with soap and water- 1220 | | 1230-RCT surveys all the samples and sampling equipment. | | No radiation is detected. All sumples and equipment are released. | | 1330 - Sumples are brought to CF-625 for preservation and | | preparations for shipping. 1500 - samples are ready for shipping | | We gut them at 4°C and will ship tomorrow DFG | | | | 7/26/9 | | 1/26/95 | | | | | | 7/27/95 Deignotto & P. Royd parkage and ship | |---| | 7/27/95. D. Gianotto & P. Boyd package and ship
sample to RML, Barninger, + Roy Weston for
analysis 1300. | | analy 5,5 (300. | \ | | 7/31/95 - RML results for PBF-26 are recieved. | |--| | See Communication from J.A. Daley to D.F. Gianotto | | (JAD-99-95), Low levels of Cs-137 are detected. | | 10.7-4,7 pCi (qm). | | Talked with Bob Sutherland concerning to the | | surveying of sample location. We plan on doing this | | next week. Chris Hiaring recieved some preliminary | | results from Huntindon for PCBs, Which indicated all | | samples were < 10 ppm for PCB. | chelon I III On I. De III I | |--| | 8/15/95 L. Wilson, D. Grady + B. Sutherland | | most at PBF Gaud Gate 1305. We | | Clown at PBF 30 1315 to locate | | Surveying points. D Grady + 10 Suther land | | With Angasalmouts (an Survey With | | Dully barn our sample point. | | arrive at PBF. 30 1315 to locate Surveying Doints. D. Grady + B. Suther land Withcheapulments Can Survey With Bully barn Duch Sample point. 1330 arrive at Spert II I. Wilson, W. Gmdy | | D. Sutherland Stake all Veritication | | Samples points a total of 5 samples. | | 1345 (Irrive, back to enough hate. | | Cliscuss getting work permit for
PBF Will Finish Surrey at a later.
Clate when all paper work is Completed. | | BF Will Finish Surren at a later. | | Olate when all Daple work in amoleted | | | | | | | | | | The same of sa | | | | 490 | | | | | | | | | | | | TEED ICHIE PERMEN A DIVER FORMANI | |---| | 8/22/95 L. Wilson and D. Mianto meet | | Will Bob Sutherland at A 1E19-633 | | discuss Surveying at PBF-30 and SpentTV. | | Waiting to get final Surveys to turn into | | Mark Balusha. | | | | | | | | | | | | | | | | 8. | | | | X | \ | ### INTERDEPARTMENTAL COMMUNICATION Date: September 15, 1995 To: C. M. Hiaring MS 3953 6-2719 From: R. P. Wells MS 3910 6-4561 Subject: TRANSMITTAL OF THE LIMITATIONS AND VALIDATION (L&V) REPORT, POWER BURST FACILITY-30 SEPTIC TANKS, RADIOCHEMICAL ANALYSIS, SAMPLE DELIVERY GROUP #PTK00401AB - RPW-260-95 Attached is the L&V report for the radiochemical analysis of two water samples and one solid sample collected at the Idaho National Engineering Laboratory (INEL). The samples were collected in support of the Power Burst Facility-30 Septic Tank investigation conducted by the Lockheed Idaho Technologies Company, Environmental Operations Branch. A copy of the validated data is also attached. The data package was reviewed by the INEL Sample Management Office (SMO) for validation of the sample results data. The validation was performed using SMO Standard Operating Procedure (SOP) 12.1.2, "Standard Operating Procedure for Radiological Data Validation." The data were validated at method validation level "A," as described in technical procedure, TPR-79, "Levels of Analytical Method Data Validation." All analysis results reported in this data package meet the requirements of analytical support level four for radiological analysis. Should you have any questions about these data or the L&V report, please contact me at 526-4561 or OfficeVision ID WR1. ### **RPW** ### Attachments cc: R. J. Bargelt, (w/o Attach), MS 3910 D. Jones, MS 3910 C. S. Watkins (w/o Attach), MS 3910 ARDC Files, MS 3922 File Code 438 Attachment September 15, 1995 RPW-260-95 Page 1 of 6 # DATA LIMITATIONS AND VALIDATION REPORT FOR LOCKHEED IDAHO TECHNOLOGIES COMPANY IDAHO NATIONAL ENGINEERING LABORATORY POWER BURST FACILITY-30 SEPTIC TANKS SAMPLE DELIVERY GROUP #PTK00401AB RADIOCHEMICAL ANALYSIS Attachment September 15, 1995 RPW-260-95 Page 2 of 6 ### INTRODUCTION Two water samples and one solid sample were collected to provide characterization data in support of the Power Burst Facility-30 Septic Tank investigation at the Idaho National Engineering Laboratory (INEL). The investigation is being conducted by the Lockheed Idaho Technologies Company Environmental Operations Branch at the INEL. The samples were collected on July 26, 1995 and analyzed by Barringer Laboratories Inc. located in Golden, CO. The samples were analyzed for gross alpha (GRA) and gross beta (GRB). Sample results are collectively identified as Sample Delivery Group (SDG) PTK00401AB. The sample results table provides a cross reference of the laboratory sample number to the INEL sample number. ### DATA EVALUATION AND LABORATORY PERFORMANCE ### 1. DATA PACKAGE COMPLETENESS The Barringer data package was complete and comprehensive. ### 2. INSTRUMENT CALIBRATIONS All detector calibrations are shown to be in control at the time of sample analysis. ### 3. LABORATORY CONTROL SAMPLES The purpose of the Laboratory Control Sample (LCS) is to demonstrate the recovery of the analyte(s) of interest throughout the analytical process. If the LCS is within the acceptance range of $100 \pm 15\%$, it is considered to be in control. If the LCS is outside of this range but within the range of $100 \pm 20\%$, the LCS is considered to be questionable. If the LCS recovery is outside this range, the LCS is considered to be out-of-control. A LCS was analyzed for each matrix type. The GRA and GRB LCS recoveries for water sample analysis are 102% and 94%, respectively. For solid sample analysis, the GRA and GRB LCS recoveries are 99% and 94%, respectively. The LCS recoveries are in control. Attachment September 15, 1995 RPW-260-95 Page 3 of 6 ### 4. BLANK SAMPLES The purpose of the blank sample is to demonstrate that the analytical method used does not contribute to the activity of the analyte(s) of interest. If the blank is less than one-half the contractual detection limit (CDL), it is considered to be in control. If the blank is greater than one-half the CDL but less than the CDL, it is considered to be questionable. If the blank is greater than the CDL, it is considered to be out-of-control. A blank was analyzed for each matrix type. The blanks for GRA and GRB analyses of both matrix types are in control. ### DUPLICATE SAMPLES Duplicates are evaluated by calculation of a mean difference value. This mean difference value is calculated using the original sample result, the duplicate result, and their associated errors. A mean difference of 1.5 or less indicates a 95% confidence level that the two values are statistically equal. A mean difference of greater than 1.5, but less than 2.0, indicates a 90% confidence level that the two values are statistically equal and the duplicate is considered to be questionable. If the mean difference is greater than 2.0, the two values are considered not to be statistically equal and the duplicate is considered to be out-of-control. A duplicate was analyzed for each matrix type. For the GRA analysis of water samples, neither the sample nor its duplicate contained any detectable activity at the 95% confidence level and provided no information. For the GRA analysis of solid samples, the calculated mean difference is 0.23, which is in control. For the GRB analysis of water samples, neither the sample nor its duplicate contained any detectable activity at the 95% confidence level and provided no information. For the GRB analysis of solid samples, the calculated mean difference is 0.21, which is in control. ### 6. ANALYTICAL YIELDS Neither GRA nor GRB analyses use an analytical yield in the calculation of results. Attachment September 15, 1995 RPW-260-95 Page 4 of 6 ### 7. INTERCOMPARISON SAMPLE RESULTS Intercomparison sample results were available in the Sample Management Office (SMO) from the Department of Energy Environmental Measurements Laboratory Quality Assessment Program (QAP) for the GRA and GRB analyses of water samples and the Environmental Protection Agency Environmental Monitoring Systems Laboratory Performance Evaluation Studies Program for the GRA dnd GRB analyses of water samples. The laboratory demonstrates acceptable accuracy and precision for these analyses. An intercomparison sample program does not exist for the GRA and GRB analyses of solid samples. ### 8. BLIND QUALITY CONTROL SAMPLES No blind quality control samples were submitted with this SDG. ### 9. OTHER QUALITY CONTROL PARAMETERS One problem was noted during review of the laboratory data package. (a) The SDG number is incorrectly transcribed on each page of the report as TK00401AB. The SMO protocol requires the lowest sample number, taking into account both alpha and numeric characters, to be the SDG number. The correct SDG number should be PTK00401AB. This correction will be annotated on the laboratory report forms prior to entry into the Integrated Environmental Data Management System. All other applicable quality control parameters are considered to be in control. Refer to the Quality Control Data Assessment Summary Table for tabulation of the validation parameters. Attachment September 15, 1995 RPW-260-95 Page 5 of 6 ### QUALITY CONTROL DATA ASSESSMENT SUMMARY | | WATER SOLIE
SAMPLES SAMPLE | | | | | |-------------------------------------|-------------------------------|-----|-----|-----|--| | VALIDATION PARAMETERS | GRA | GRB | GRA | GRB | | | Data Package Completeness | I | I | I | I | | | 2. Instrument Calibrations | I | I | I | I | | | 3. Laboratory Control Samples | I | I | I | I | | | 4. Blank Samples | I | I | I | I | | | 5. Duplicate Samples | N | N | I | I | | | 6. Analytical Yields | N | N | N | N | | | 7. Intercomparison Sample Results | I | I | N | N | | | 8. Blind Quality Control Samples | N | N | N | N | | | 9. Other Quality Control Parameters | I | I | I | I | | I = In Control N = Not Applicable ### **DATA SUMMARY** The Data Qualifier Flag Summary Table indicates the data qualifier flags assigned to the sample results. Sample results that are statistical nondetects at the 95% confidence level receive a "U" flag. Results that are above the detection limit and meet the criteria for statistically positive values at the 95% confidence limit receive no flag. Results that are associated with a questionable quality control parameter may receive a "J" flag (see details below). Results that are associated with an out-of-control quality control parameter may receive a "J" or "R" flag, depending upon the severity of the violation (see details below). Attachment September 15, 1995 RPW-260-95 Page 6 of 6 There were two water samples and one soil sample analyzed for GRA and GRB activity. There were six results reported for this SDG. ### SDG #PTK00401AB ### GRA results: The GRA results for one water sample and the one solid sample are statistically positive values at the 95% confidence level. These results receive no flags. The GRA result for the one other water sample is flagged "U" as a statistical nondetect at the 95% confidence level. ### GRB results: The GRB results for one water sample and the one solid sample are statistically positive values at the 95% confidence level. These results receive no flags. The GRB result for the one other water sample is flagged "U" as a statistical nondetect at the 95% confidence level. ### DATA QUALIFIER FLAG SUMMARY TABLE SDG Number: PTK00401AB | SAMPLE NUMBER | GRA | GRB | |---------------|-----|-----| | PTK00401AB | | | | PTK00701AB | U | U | | PTK00501AB | | | - BLANK = No data qualifier flags are assigned to this sample for this analyte. The result is a statistically positive value at the 95% confidence level. - U = The result is a statistical nondetect at the 95% confidence level. 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 Ms. Donn'a R. Kirchner LITCO · P.O. Box 1625 ERP ARDC Idaho Falls, ID 83415-3904 Lab Name : BARNGR Analysis : alpha Test Name: GRA Job : 952842E SDG No. : TK00401AB Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 4 Rec. Date: 07/28/95 Method : Total Date: 08/26/95 l Page: ### SAMPLE NUMBERS | Field
Sample No. | Lab Sample
ID No. | Date | Sample No. | Lab Sample
ID No. | Date | |---------------------|----------------------|------|------------|----------------------|----------| | PTK00401AB | | | PTK00701AB | | 07/26/95 | Comments: Gross Alpha Release of the data contained in this data package has been authorized by the laboratory manager or the manager's designee, as verified by the following: Signature: Name: Michael Howard Title: Laboratory Manager Date: 5-28-45 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 . Donna R. Kirchner TCO · O. Box 1625 ERP ARDC aho Falls, ID 83415-3904 .b Name : BARNGR alysis : alpha st Name: GRA b : 952842E G No. : TK00401AB Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 4 Rec. Date: 07/28/95 Date: 08/28/95 2 Page: Method : Total | ient ID | Lab ID | Matrix | Result Error | Units | Analysis
Date | • | e Detect
Yield ID | |------------------------|--------------------|------------------|--------------------|-------|----------------------|---|----------------------| | 1K00401AB
1K00701AB | 9528421
9528422 | NWATER
NWATER | 1.6±0.7
0.2±0.4 | | 08/18/95
08/18/95 | | | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 Ms. Donna R. Kirchner LITCO - P.O. Box 1625 ERP ARDC Idaho Falls, ID 83415-3904 Lab Name : BARNGR Analysis : alpha Test Name: GRA Job : 952842E SDG No. : TK00401AB Case No. : ERP94 Date: 08/26/95 3 Page: Analy Mth: 900.0 Detec Lmt: 4 Rec. Date: 07/28/95 Method : Total | QC Sample
ID | | | s Sample
Result Err | | | LCS Analysis Chem Detect
Yield Date Yield ID | |------------------------------|-------------------------|-----|----------------------------|------|-------------------------|---| | PTK00701AB-D
Blank
LCS | OTHER
OTHER
OTHER | BLK | 0.2±0.4
0.3±0.3
98±2 | NANA | pCi/L
pCi/L
pCi/L | NA 08/18/95 105.4 H4
NA 08/18/95 105.4 H3
102 08/16/95 105.4 G1 | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 3. Donna R. Kirchner TCO. O. Box 1625 ERP ARDC laho Falls, ID 83415-3904 b Name : BARNGR alysis : beta st Name: GRB : 952842E G No. : TK00401AB Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 4 Rec. Date: 07/28/95 Date: 08/26/95 Page: Method : Total ### SAMPLE NUMBERS | Field mple No. | Lab Sample
ID No. | _ | Field
Sample No. | Lab Sample
ID No. | Sample
Date | |----------------|----------------------|----------|---------------------|----------------------|----------------| | 7K00401AB | 9528421 | 07/26/95 | PTK00701AB | 9528422 (| 7/26/95 | omments: coss Beta elease of the data contained in this data package has been authorized by the aboratory manager or the manager's designee, as verified by the following: ignature: Name: Michael Howard tle: Laboratory Manager Date: (-/ L8 -5) 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 Ms. Donna R. Kirchner LITCO · P.O. Box 1625 ERP ARDC Idaho Falls, ID 83415-3904 Lab Name : BARNGR Analysis : beta Test Name: GRB Job : 952842E SDG No. : TK00401AB Date: 08/26/95 Page: 5 Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 4 Rec. Date: 07/28/95 Method : Total | Client ID | Lab ID | Matrix | Result Error | Units | Analysis
Date | Sample De
Size Yield | etect
ID | |--------------------------|--------------------|------------------|--------------------|-------|------------------|------------------------------|-------------| | PTK00401AB
PTK00701AB | 9528421
9528422 | NWATER
NWATER | 6.0±1.1
0.9±1.0 | | | 0.2100 100.0
0.2100 100.0 | | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 3. Donna R. Kirchner ITCO · O. Box 1625 ERP ARDC laho Falls, ID 83415-3904 Date: 08/26/95 Page: 6 ab Name : BARNGR nalysis : beta est Name: GRB GRB 95284 ob : 952842E OG No. : TK00401AB Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 4 Rec. Date: 07/28/95 Method : Total | 3 Sample
ID | | Sample
Result Err | | | | Analysis
Date | | | |---------------------------|-------------------|----------------------------|------|-------------------------|----|----------------------------------|---------|----| | FK00701AB-D
Lank
CS | DUP
BLK
LCS | 0.0±0.9
0.4±0.2
89±1 | NANA | pCi/L
pCi/L
pCi/L | AN | 08/18/95
08/18/95
08/16/95 | 100.0 F | H3 | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 Ms. Donna R. Kirchner LITCO. P.O. Box 1625 ERP ARDC Idaho Falls, ID 83415-3904 Lab Name : BARNGR Analysis : alpha Test Name: GRA Job : 952842E SDG No. : TK00401AB Date: 08/26/95 Page: 7 Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 10 Rec. Date: 07/28/95 Method : Total ### SAMPLE NUMBERS | Field | Lab Sample | _ | Field | Lab Sample | Sample | |------------|------------|----------|------------|------------|--------| | Sample No. | ID No. | | Sample No. | ID No. | Date | | PTK00501AB | 9528423 | 07/26/95 | | | | Comments: Gross Alpha Release of the data contained in this data package has been authorized by the laboratory manager or the manager's designee, as verified by the following: | Signature: | nill pand | Name: | Michael Howard | |------------------|------------|-------|----------------| | Title: Laborator | ry Manager | Date: | 8-23-95 | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 s. Donna R. Kirchner ITCO · .O. Box 1625 ERP ARDC daho Falls, ID 83415-3904 ab Name : BARNGR nalysis : alpha est Name: GRA : 952842E ob DG No. : TK00401AB Date: 08/26/95 Page: Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 10 Rec. Date: 07/28/95 Method : Total | | Lab ID |
Result Error |
Date | Size Y | | |-----------|--------|------------------|----------|--------|--| | TK00501AB | | 6.3±1.7 | | | | 15000 W. 5TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 Ms. Donna R. Kirchner LITCO. P.O. Box 1625 ERP ARDC Idaho Falls, ID 83415-3904 Lab Name : BARNGR Analysis : alpha Test Name: GRA Job : 952842E SDG No. : TK00401AB Date: 08/26/95 Page: 9 Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 10 Rec. Date: 07/28/95 Method : Total | QC Sample
ID | | s Sample
Result Err | | LCS Analysis
Yield Date | | |------------------------------|-----|----------------------------|-------------------------|---|------------| | PTK00501AB-D
Blank
LCS | BLK | 7.5±2.0
0.2±0.2
95±2 | pCi/g
pCi/g
pCi/g | NA 08/18/99
NA 08/18/99
99 08/18/99 | 5 103.6 G3 | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 s. Donna R. Kirchner ITCO · .O. Box 1625 ERP ARDC daho Falls, ID 83415-3904 Date: 08/26/95 Page: 10 ab Name : BARNGR nalysis : beta est Name: GRB ob : 952842E OG No. : TK00401AB Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 10 Rec. Date: 07/28/95 Method : Total ### SAMPLE NUMBERS Field Lab Sample Sample Field Lab Sample Sample ample No. ID No. Date Sample No. ID No. Date TK00501AB 9528423 07/26/95 omments: elease of the data contained in this data package has been authorized by the aboratory manager or the manager's designee, as verified by the following: 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 Ms. Donna R. Kirchner LITCO. P.O. Box 1625 ERP ARDC Idaho Falls, ID 83415-3904 Date: 08/26/95 Page: 11 Lab Name : BARNGR Analysis : beta Test Name: GRB SDG No. : TK00401AB : 952842E Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 10 Rec. Date: 07/28/95 Method : Total | Client ID | Lab ID | Result Error |
Date | Size Y | Detect
Yield ID | |------------|--------|--------------|----------|--------|--------------------| | PTK00501AB | | 20±3 | 08/18/95 | | | 15000 W. 6TH AVE., SUITE 300 GOLDEN, CO 80401 (303) 277-1687 FAX (303) 277-1689 3. Donna R. Kirchner TCO · O. Box 1625 ERP ARDC laho Falls, ID 83415-3904 ab Name : BARNGR nalysis : beta est Name: GRB : 952842E ob - OG No. : TK00401AB Date: 08/26/95 Page: 12 Case No. : ERP94 Analy Mth: 900.0 Detec Lmt: 10 Rec. Date: 07/28/95 Method : Total Known LCS Analysis Chem Detect 3 Sample Analysis Sample ID Matrix Type Result Err Result Err Units Yield Date Yield ID CK00501AB-D OTHER DUP 18±3 ANAN pCi/g NA 08/18/95 100.0 H1 OTHER BLK NANA pCi/g NA 08/18/95 100.0 G3 95NA pCi/g 94 08/18/95 100.0 H3 ank 0.5 ± 0.2 :S OTHER LCS 89<u>±</u>1 ### NOTEGRAM Date: November 14, 1995 To: Rulon Nielsen From: D.E. Burns Subject: TRACK-1 CALCULATIONS FOR PBF-30 References: a) DOE, 1994, Track 2 Sites: Guidance for Assessing Low Probability Hazard Sites at INEL, Revision 6, DOE/ID-10389, January 1994. b) Rood, A. S., 1994a, GWSCREEN: A Semi-Analytical Model for the Assessment of the Groundwater Pathway from Surface or Buried Contamination: Version 2.0, Theory and User's Manual, EGG-GEO-10797, June 1994. Attached are tables showing the results of the risk-based soil concentration calculations, and the estimated leach field contaminant concentrations for PBF-30. All of the contaminants shown on the PBF-30 contaminant worksheet you gave me were evaluated in this analysis. The risk-based concentrations shown in Table 1 were calculated by rearranging the risk equations presented in reference b to solve for soil concentrations that would produce a risk equal to 1E-06 or a hazard quotient equal to 1.0. The concentrations shown are the minimum concentrations calculated from analysis of five exposure routes (soil ingestion, inhalation of fugitive dust, inhalation of volatiles, ingestion of groundwater, and external radiation exposure) in both an occupational and residential scenario. All parameter values used in these calculations are consistent with the EPA standard default values described in reference a. The groundwater ingestion risk-based concentrations were calculated with the use of the computer model GWSCREEN (reference b). For the purposes of GWSCREEN modeling, I assumed that the contaminants contained in the PBF-30 storage tank would have contaminated a volume of 10 ft x 10 ft x 10 ft (3.05 m x 3.05 m x 3.05 m), and that the depth to groundwater beneath the storage tank is 139 m. These assumptions are consistent with other Track-1 studies performed at PBF. As shown in the second column of Table 1, risk-based soil concentrations could not be calculated for all of the contaminants that were detected in the storage tank's sludge. For example, six contaminants (aluminum, calcium, iron, magnesium, potassium, and sodium) are essential nutrients that are considered non-toxic to humans. Four other contaminants (2,4-Dichlorobenzene, cobalt, copper, and vanadium), are currently under review by the EPA, so they do not have the toxicity information needed to calculate risk-based concentrations. The estimated leach field contaminant concentrations are shown in the fourth column of Table 1. These concentrations were estimated assuming the leach field has a surface area of 1,000 ft², contaminants contained in the septic system water were deposited in the top 3 ft of soil after infiltrating into the leach field, a total of 40,000,000 gal of water flushed through the septic system over the 8 years that the system was in use, and the concentrations of contaminants that traveled through the septic system were the same as the maximum concentrations measured during the recent sampling of the septic storage tank water. With these assumptions, the following equation was used to estimate the leach field contaminant concentrations; where; C_{soil} = Contaminant soil concentration (mg/kg) C_{water} = Contaminant water concentration ($\mu g/L$) CF = Conversion factor given by; $$CF = \frac{4E+07 \ gal \times 3.79 \ L/gal \times 0.001 \ mg/\mu g}{3,000 \ ft^3 \times (0.305 \ m/ft)^3 \times (100 \ cm/m)^3 \times 1.5 \ g/cm^3 \times 0.001 \ kg/g}$$ $$CF - 1.19 \frac{L - mg}{\mu g - kg}$$ Tables 2 and 3 show the exposure route specific risk-based soil concentrations for an occupational and residential exposure scenario. The concentrations shown in the second column of Table 1 are the minimum concentrations from Tables 2 and 3 for each contaminant. If you have any questions about these results, please call me at 6-4324. | Table 1. | Risk-based soil concentrations | for | PBF-30. | |----------|--------------------------------|-----|---------| |----------|--------------------------------|-----|---------| | Contaminant | Risk-Based Soil
Concentration
(mg/kg or pCi/g) | Maximum Measured Septic System Water Concentration (µg/L or pCi/L) | Estimated Leach
Field
Concentrations
(mg/kg or pCi/g) | |---------------------|--|--|--| | Semi-volatiles: | | | | | 2,4-Dichlorophenol | NC^a | Not Detected ^c | Not Calculated | | 1,4-Dichlorobenzene | 1.91E+05 | 1.50E+05 | 1. 79 E+05 | | Volatiles: | | | | | Methylene Chloride | 7.55E+01 | 4.00E+00 | 4.76E+00 | | 2 - Butanone | 1.36E+05 | 1.80E+01 | 2.14E+01 | | Metals: | | | | | Aluminum | NC^b | 2.79E+03 | 3.32E+03 | | Arsenic | 4.27E-01 | 4.90E+00 | 5.83E + 00 | | Barium | 1.89E+04 | 6.19E+01 | 7.37E+01 | | Beryllium | 1.49E-01 | 4.50E-01 | 5.36E-01 | | Calcium | NC^{b} | 1.39E + 04 | 1.65E+04 | | Chromium | 1.35E+03 | 9.96E+01 | 1.19E+02 | | Cobalt | NCª | 2.06E+01 | 2.45E+01 | | Copper | NC^a | 9.45E + 01 | 1.12E+02 | | Iron | NC^b | 1.42E+05 | 1.69E+05 | | Lead | 9.53E+04 | 2.54E + 02 | 3.02E + 02 | | Magnesium | NC^b | 1.93E+03 | 2.30E+03 | | Manganese | 1.35E+03 | 6.20E + 02 | 7.38E+02 | | Nickel | 5.40E + 03 | 5.33E+01 | 6.34E + 01 | | Table 1. | Risk-based soil concentrations for PBF-30. | | | |----------------------------------|--|--|--| | Contaminant | Risk-Based Soil
Concentration
(mg/kg or pCi/g) | Maximum Measured Septic System Water Concentration (µg/L or pCi/L) | Estimated Leach
Field
Concentrations
(mg/kg or pCi/g) | | Potassium | NC^b | 9.86E+02 | 1.17E+03 | | Silver | 1.35E+03 | 8.43E+02 | 1.00E+03 | | Sodium | NC^b | 2.44E+03 | 2.90E + 03 | | Vanadium | NC ^a | 1.88E+01 | 2.24E+01 | | Zinc | 8.10E+04 | 2.81E+02 | 3.34E+02 | | PCBs: Aroclor 1260 Radionuclides | 8.31E-02 | Not Measured ^c | Not Calculated | | | | | | 8.61E-02 Not Measured^c Not Calculated Cs-137 a. Not calculated due to a lack of available toxicity information. b. Not calculated because contaminant is an essential nutrient. c. Contaminant was not detected during site sampling. Table 2. Occupational exposure scenario risk-based soil concentrations. | | | | | | Occupational Scen | агіо | | | | | | | |---------------------|----------|----------------|---------------|-------------|-------------------|---------------|------------|----------------|-------|------------|---------------|---------------| | | | Soil Ingestion | | | Inhalation | | Inhala | ition | | Groundwa | ater | External | | | | | | | of Dust | | of Vol | atiles | | Ingestion | | Exposure | | | - | | SC at | | | SC at | | | | | SC at | SC at | | Contaminant | SC at | SC at | 1E-06 | SC at | SC at | 1E-06 | SC at | SC at | SC at | SC at | 1E-06 | 1E-06 | | | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk=1E-06 | radionuclides | HQ=1 | risk=1E-
06 | HQ=1 | risk=1E-06 | radionuclides | radionuclides | | | | ••• | *** | 7.77 | *** | 371 | 2 405 - 05 | NA | 37.4 | 27.4 | 274 | *** | | 1,4-Dichlorobenzene | NA | NA | NA | 7.77E+10 | NA | NA | 2.40E+05 | | NA | NA | NA | NA | | 2,4-Dichlorophenol | NA | 2-Butanone | 1.20E+06 | NA | NA | 2.77E+10 | NA | NA | 1.71E+05 | NA | NA | NA | NA | NA | | Arsenic | 6.00E+02 | 3.80E+00 | NA | NA | 1.85E+04 | NA | Barium | 1.40E+05 | NA | Beryllium | 1.00E+04 | 1.33E+00 | NA | NA | 3.31E+04 | NA | Chromium | 1.00E+04 | ŅΑ | NA | NA | 6.61E+03 | NA | Cobalt | NA | Соррег | NA NA | | Lead | NA NA | | Manganese | 1.00E+04 | NA | NA | 4.86E+06 | NA | Methylene Chloride | 1.20E+05 | 7.60E+02 | NA | NA | 1.69E+08 | NA | NA | 1.18E+02 | NA | NA | NA | NA | | Nickel | 4.00E+04 | NA | PCB | 1.40E+02 | 7.40E-01 | NA | Silver | 1.00E+04 | NA | Vanadium | NA | Zinc | 6.00E+05 | NA | Cs-137 | NA | NA | 1.01E+02 | NA NA | NA | 3.63E+04 | NA | NA | NA | NA | NA | 8.61E-02 | Table 2. Residential exposure scenario risk-based soil concentrations. | | | | | | | | Residential | Scenario | | | | | | |---------------------|----------|---------------|---------------|----------|--------------|---------------|-------------|------------|----------|--------------|---------------|---------------|-------------------| | | | Soil Ingestic |)n | | Inhala | tion | Inhalatio | n | | Groundwa | ater | External | Min | | | | | | | of Du | st | of Volatile | es | | Ingestion | | | SC | | | <u> </u> | | | | | | | | | | | | | | | 1 | | SC at | | | SC at | | | l | | SC at | SC at | | | Contaminant | SC at | SC at | 1E-06 | SC at | SC at | 1E-06 | SC at | SC at | SC at | SC at | 1E-06 | 1E-06 | SC | | | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk=1E-06 | HQ=1 | risk = 1E-06 | radionuclides | radionuclides | (mg/kg or pCi/g)) | | 1.4-Dichlorobenzene | NA | NA | NA | 5.64E+10 | NA | NA | 1.91E+05 | NA | NA | NA | NA | NA | 1.9IE+05 | | 2,4-Dichlorophenol | NA. | NA | 2-Butanone | 1.62E+05 | NA | NA | 2.01E+10 | NA | NA | 1.36E+05 | NA | 2.54E+05 | NA | NA | NA | 1.36E+05 | | Arsenic | 8.10E+01 | 4.27E-01 | NA | NA | 1.08E+04 | NA | NA | NA | 5.29E+02 | 2.75E+00 | NA | NA | 4.27E-01 | | Barium | 1.89E+04 | NA 2.26E+06 | NA | NA | NA | 1.89E+04 | | Beryllium | 1.35E+03 | 1.49E-01 | NA | NA | 1.94E+04 | NA | NA | NA | 7.80E+05 | 8.47E+01 | NA | NA | 1.49E-01 | | Chromium | 1.35E+03 | NA | NA | NA | 3.87E+03 | NA | NA | NA | 4.52E+03 | NA | NA | ΝA | 1.35E+03 | | Cobalt | NA | Copper | NA | Lead | NA 9.53E+04 | NA | NA | NA | 9.53E+04 | | Manganese | 1.35E+03 | NA | NA | 3.52E+06 | NA | NA | NA | NA | 1.61E+05 | NA | NA | NA | 1.35E+03 | | Methylene Chloride | 1.62E+04 | 8.53E+01 | NA | NA | 9.88E+07 | NA | NA | 7.55E+01 | 2.54E+04 | 1.32E+02 | NA | NA | 7.55E+01 | | Vickel | 5.40E+03 | NA 1.27E+06 | NA | NA | NA | 5.40E+03 | | PCB | 1.89E+01 | 8.31E-02 | NA | NA | NA | NA | NA | NA | 5.65E+03 | 2.44E+01 | NA | NA | 8.31E-02 | | Silver | 1.35E+03 | NA 2.88E+05 | NA | NA | NA | 1.35E+03 | | /anadium | NA | NA | NA. | NA | Zinc | 8.10E+04 | NA 2.68E+06 | NA | NA | NA | 8.10E+04 | | Cs-137 | NA. | NA | 2.50E+01 | NA | NA | 2.18E+04 | NA | NA | NA. | NA | 9.34E+219 | 1.67E-02 | 8.61E-02 | ### **NOTEGRAM** Date: November 14, 1995 To: Rulon Nielsen From: D.E. Burns Subject: TRACK-1 CALCULATIONS FOR PBF-30 References: a) DOE, 1994, Track 2 Sites: Guidance for Assessing Low Probability Hazard Sites at INEL, Revision 6, DOE/ID-10389, January 1994. b) Rood, A. S., 1994a, GWSCREEN: A Semi-Analytical Model for the Assessment of the Groundwater Pathway from Surface or Buried Contamination: Version 2.0, Theory and User's Manual, EGG-GEO-10797, June 1994. Attached are tables showing the results of the risk-based soil concentration calculations, and the estimated leach field contaminant concentrations for PBF-30. All of the contaminants shown on the PBF-30 contaminant worksheet you gave me were evaluated in this analysis. The risk-based concentrations shown in Table 1 were calculated by rearranging the risk equations presented in reference b to solve for soil concentrations that would produce a risk equal to 1E-06 or a hazard quotient equal to 1.0. The concentrations shown are the minimum concentrations calculated from analysis of five exposure routes (soil ingestion, inhalation of fugitive dust, inhalation of volatiles, ingestion of groundwater, and external radiation exposure) in both an occupational and residential scenario. All parameter values used in these calculations are consistent with the EPA standard default values described in reference a. The groundwater ingestion risk-based concentrations were calculated with the use of the computer model GWSCREEN (reference b). For the purposes of GWSCREEN modeling, I assumed that the contaminants contained in the PBF-30 storage tank would have contaminated a volume of 10 ft x 10 ft x 10 ft (3.05 m x 3.05 m x 3.05 m), and that the depth to groundwater beneath the storage tank is 139 m. These assumptions are consistent with other Track-1 studies performed at PBF. As shown in the second column of Table 1, risk-based soil concentrations could not be calculated for all of the contaminants that were detected in the storage tank's sludge. For example, six contaminants (aluminum, calcium, iron, magnesium, potassium, and sodium) are essential nutrients that are considered non-toxic to humans. Four other contaminants (2,4-Dichlorobenzene, cobalt, copper, and vanadium), are currently under review by the EPA, so they do not have the toxicity information needed to calculate risk-based concentrations. The estimated leach field contaminant concentrations are shown in the fourth column of Table 1. These concentrations were estimated assuming the leach field has a surface area of 1,000 ft², contaminants contained in the septic system water were deposited in the top 3 ft of soil after infiltrating into the leach field, a total of 40,000,000 gal of water flushed through the septic system over the 8 years that the system was in use, and the concentrations of contaminants that traveled through the septic system were the same as the maximum concentrations measured during the recent sampling of the septic storage tank water. With these assumptions, the following equation was used to estimate the leach field contaminant concentrations; where; C_{soil} = Contaminant soil concentration (mg/kg) C_{water} = Contaminant water concentration ($\mu g/L$) CF = Conversion factor given by; $$\frac{4E+07 \text{ gal x } 3.79 \text{ L/gal x } 0.001 \text{ mg/µg}}{3,000 \text{ ft}^3 \text{ x } (0.305 \text{ m/ft})^3 \text{ x } (100 \text{ cm/m})^3 \text{ x } 1.5 \text{ g/cm}^3 \text{ x } 0.001 \text{ kg/g}}$$ $$CF = 1.19 \frac{L - mg}{\mu g - kg}$$ Tables 2 and 3 show the exposure route specific risk-based soil concentrations for an occupational and residential exposure scenario. The concentrations shown in the second column of Table 1 are the minimum concentrations from Tables 2 and 3 for each contaminant. If you have any questions about these results, please call me at 6-4324. | Table 1. | Risk-based so | il concentrations | for | PBF-30. | |----------|---------------|-------------------|-----|---------| |----------|---------------|-------------------|-----|---------| | Contaminant | Risk-Based Soil
Concentration
(mg/kg or pCi/g) | Maximum Measured Septic System Water Concentration (µg/L or pCi/L) | Estimated Leach
Field
Concentrations
(mg/kg or pCi/g) | |---------------------|--|--|--| | Semi-volatiles: | | | | | 2,4-Dichlorophenol | NC ^a | Not Detected ^c | Not Calculated | | 1,4-Dichlorobenzene | 1.91E+05 | 1.50E+05 | 1.79E+05 | | | | | | | Volatiles: | | | | | Methylene Chloride | 7.55E+01 | 4.00E+00 | 4.76E+00 | | 2 - Butanone | 1.36E+05 | 1.80E+01 | 2.14E+01 | | Metals: | | | | | Aluminum | NC^{b} | 2.79E+03 | 3.32E+03 | | Arsenic | 4.27E-01 | 4.90E + 00 | 5.83E+00 | | Barium | 1.89E+04 | 6.19E+01 | 7.37E + 01 | | Beryllium | 1.49E-01 | 4.50E-01 | 5.36E-01 | | Calcium | NC^{b} | 1.39E+04 | 1.65E+04 | | Chromium | 1.35E+03 | 9.96E+01 | 1.19E+02 | | Cobalt | NC^a | 2.06E + 01 | 2.45E+01 | | Copper | NC^a | 9.45E+01 | 1.12E+02 | | Iron | $NC^{\mathfrak{b}}$ | 1.42E+05 | 1.69E+05 | | Lead | 9.53E+04 | 2.54E + 02 | 3.02E+02 | | Magnesium | NC^b | 1.93E+03 | 2.30E+03 | | Manganese | 1.35E+03 | 6.20E+02 | 7.38E+02 | | Nickel | 5.40E+03 | 5.33E+01 | 6.34E+01 | | Table 1. | Risk-based | soil concentrations | for PBF-30. | |----------|------------|---------------------|-------------| | | | | | | Contaminant | Risk-Based Soil
Concentration
(mg/kg or pCi/g) | Maximum Measured Septic System Water Concentration (µg/L or pCi/L) | Estimated Leach
Field
Concentrations
(mg/kg or pCi/g) | |----------------|--|--|--| | Potassium | NC ^b | 9.86E+02 | 1.17E+03 | | Silver | 1.35E+03 | 8.43E+02 | 1.00E+03 | | Sodium | NC ^b | 2.44E+03 | 2.90E+03 | | Vanadium | NC^{2} | 1.88E+01 | 2.24E+01 | | Zinc | 8.10E+04 | 2.81E+02 | 3.34E+02 | | PCBs: | | | | | Argelor 1260 | 8.31E-02 | Not Measured ^c | Not Calculated | | Radionuclides: | | | | | Cs-137 | 8.61E-02 | Not Measured ^c | Not Calculated | a. Not calculated due to a lack of available toxicity information. b. Not calculated because contaminant is an essential nutrient. c. Contaminant was not detected during site sampling. Table 2. Occupational exposure scenario risk-based soil concentrations. | | | | | (| Occupational Scen | патіо | | | | | | | |--|----------|----------------|---------------|----------|-------------------|---------------|----------|-------------------|-------------|------------|---------------|---------------| | | | Soil Ingestion | | | Inhalation | | Inhala | | Groundwater | | | External | | | | | | | of Dust | | of Vol | atiles | | Ingestion | | Exposure | | <u>· </u> | | | SC at | | | SC at | | | | | SC at | SC at | | Contaminant | SC at | SC at | 1E-06 | SC at | SC at | 1E-06 | SC at | SC at | SC at | SC at | 1E-06 | 1E-06 | | | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk = 1 E-
06 | HQ=1 | risk=1E-06 | radionuclides | radionuclides | | .4-Dichlorobenzene | NA. | NA | NA | 7.77E+10 | NA | NA | 2.40E+05 | NA | NA | NA | NA | NA | | 2.4-Dichlorophenol | NA | 2-Butanone | 1.20E+06 | NA | NA | 2.77E+10 | NA | NA | 1.71E+05 | NA | NA | NA | NA | NA | | Arsenic | 6.00E+02 | 3.80E+00 | NA | NA | 1.85E+04 | NA | Barium | 1.40E+05 | NA | Beryllium | 1.00E+04 | 1.33E+00 | NA | NA NA | 3.31E+04 | NA | Chromium | 1.00E+04 | NA | NA | NA NA | 6.61E+03 | NA | Cobalt | NA | NA | NA | NA NA | | Соррег | NA | NA | NA | NA NA | | æad | NA NA | NA | NA | NA NA | NA | NA | NA. | NA | NA | NA | NA | NA | | Aanganese | 1.00E+04 | NA | NA | 4.86E+06 | NA | NA | NA. | NA. | NA | NA | NA | NA | | tethylene Chloride | 1.20E+05 | 7.60E+02 | NA | NA | 1.69E+08 | NA | NA | 1.18E+02 | NA | NA | NA | NA | | lickel | 4.00E+04 | NA | СВ | 1.40E+02 | 7.40E-01 | NA | ilver | 1.00E+04 | NA | /anadium | NA | Linc | 6.00E+05 | NA | NA | NA | NA | . NA | | Pe_137 | NA | NA | 1.01E+02 | NA. | NA | 3.63E+04 | NA. | NA | NA | NA | NA | 8.61E-02 | Table 2. Residential exposure scenario risk-based soil concentrations. | | Residential Scenario | | | | | | | | | | | | | |---------------------|----------------------|--------------|---------------|------------|--------------|---------------|-------------|--------------|-------------|------------|---------------|---------------|-----------------| | | Soil Ingestion | | | Inhalation | | | Inhalation | | Groundwater | | | External | Min | | | | | | | of Du | st | of Volatile | es . | | Ingestion | ı | Exposure | \$C | | | <u> </u> | | SC at | | | SC at | | | | | SC at | SC at | | | Contaminant | SC at | SC at | 1E-06 | SC at | SC at | 1E-06 | SC at | SC at | \$C at | SC at | 1E-06 | 1E-06 | SC | | | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk = 1E-06 | radionuclides | HQ=1 | risk = 1E-06 | HQ=1 | risk=1E-06 | radionuclides | radionuclides | (mg/kg or pCi/g | | 1,4-Dichlorobenzene | NA | NA | NA | 5.64E+10 | NA | NA | 1.91E+05 | NA | NA. | NA | NA | NA | 1.91E+05 | | 2.4-Dichlorophenol | NA NA | NA | NA | NA NA | NA | NA | | 2-Butanone | 1.62E+05 | NA | NA | 2.01E+10 | NA | NA | 1.36E+05 | NA | 2.54E+05 | NA | NA | NA | 1.36E+05 | | Агзепіс | 8.10E+01 | 4.27E-01 | NA : | NA | 1.08E+04 | NA | NA | NA | 5.29E+02 | 2.75E+00 | NA | NA NA | 4.27E-01 | | Barium | 1.89E+04 | NA 2.26E+06 | NA | NA | NA | 1.89E+04 | | Beryllium | 1.35% | 1.49E-01 | NA | NA | 1.94E+04 | NA | NA | NA | 7.80E+05 | 8.47E+01 | NA | NA | 1.49E-01 | | Chromium | 1.35E+03 | NA | NA | NA | 3.87E+03 | NA | NA | NA | 4.52E+03 | NA | NA | NA | 1.35E+03 | | Cobalt | NA | NA | NA | NA. | NA NA | NA. | | Copper | NA NA | NA | NA | NA | NA | NA NA | | Lead | NA 9.53E+04 | NA | NA | NA | 9.53E+04 | | Manganese | 1.35E+03 | NA | NA | 3.52E+06 | NA | NA | NA | NA | 1.61E+05 | NA | NA | NA. | 1.35E+03 | | Methylene Chloride | 1.62E+04 | 8.53E+01 | NA | NA | 9.88E+07 | NA | NA | 7.55E+01 | 2.54E+04 | 1.32E+02 | NA. | NA. | 7.55E+01 | | Vickel | 5.40E+03 | NA 1.27E+06 | NA | NA | NA. | 5.40E+03 | | СВ | 1.89E+01 | 8.31E-02 | NA | NA. | NA | NA | NA | NA | 5.65E+03 | 2.44E+01 | NA | NA | 8.31E-02 | | Silver | 1.35E+03 | NA 2.88E+05 | NA | NA | NA | 1.35E+03 | | /anadium | NA | NA | NA | NA. | NA | Zinc | 8.10E+04 | NA 2.68E+06 | NA | NA | NA | 8.10E+04 | | Cs-137 | NA NA | NA | 2.50E+01 | NA. | NA | 2.18E+04 | NA | NA | NA NA | NA | 9.34E+219 | 1.67E-02 | 8.61E-02 |